人工智能的优势,编程团队需要有一些创造性的思维去相信通过对相邻像素点深度值的询问和比较,足以确定该点所在位置,而之后的创造则属于计算机了。
机器学习所面临的挑战之一是“过度拟合”。针对训练数据提出用以区别图片的问题相对容易,但设计一个不针对特定数据的通用程序却非常困难,它需要从数据中抽象出广泛适用的规则。
假设给定1000个人的姓名和身份号码,让你去设计问题集合对每个人加以识别,你可能会这样提问:“你的护照号码是725487414吗?好的,那你一定就是王二狗。”
天启尽量让自己的人工智能意志和硬件设施分开,这样就可以锻炼硬件的判断能力。
由于缺乏外部刺,即人身体能够做出的所有动作基本都是固定的,所以这个算法没有进一步“进化”。
事实上它也不需要进化,因为它正在有效地完成人类交给它的工作。而其他的一、书籍、音乐,等等。
算法通过与用户之间的交互过程,获取用户的偏好信息,并从中学习进一步完善自身,发现其中的关联关系,以便为下一位用户提供更优质的推荐信息,这就是天启所思考的,要用人类的方式去做很多事情。一的,不可能再有其他人拥有该组数据中的护照号码。
比如,根据给定的图表中的十个点,可得到一个方程,由该方程创建一条通过所有点的曲线。我们可以用一个十项式来表示这个方程,但这并不能很好地揭示数据中潜在的模式,而这,有必要减少方程的项数,以避免出现过度拟合的问题。
过度拟合会误导你在建模时过分关注细数据呈趋势,然后产生不符合客观规律的预测结果。如图5-3所示,这是一幅包含美国20世纪初人口总量的12个数据点的二维图。其总体趋势用二次方程式描述是最合适的,但如果我们选取的方程中x项的幂超过2时会出现什么情况如,方程式中x项的幂是从0变化到11,尽管由这个方程式确定的曲线与历史样本数据完美拟合,但一旦扩展到未来,曲线会突然向下倾斜,而这预示未来美国的人口数量会急转直下并且到2028年10月中旬就彻底消亡。这多少有些荒谬,或许是数学知道了一些不得了的事情吧!
在过去的五年里,计算机视觉识别的发展进步让可以驾驭或识别的不仅仅是人类的身体。视觉识别能力的不足,一直是计算机不能与人类智能相媲美的最大障碍。比如,数码相机对图像细节的捕捉能力过人类大脑,但在立的像素点
本章未完,请点击下一页继续阅读!