个未接受治疗的NSCLC腺癌队列的分析表明,低腺癌标志物基因(NAPSA和NKX2-1)的表达非常罕见,仅在EGFR野生型肿瘤中观察到(图2F)。总而言之,这些数据突显了TKI耐药后获得性谱系可塑性以前被低估的程度,特别是在T790M?肿瘤中,与3Q扩增和非衰老突变签名过程共存,潜在地促进了表皮生长因子受体独立的信号机制。谷
鉴于检查点抑制剂在EGFR突变的NSCLC中缺乏疗效,我们试图描述与EGFRTKI耐药相关的免疫环境,最初根据“T细胞炎症基因表达谱”(GEP)特征对肿瘤进行分层。
然后,我们使用了一种已发表的计算方法(TEDER;REF)进一步阐明与TKI耐药相关的浸润免疫细胞亚群。这表明,与免疫T790M+肿瘤相比,免疫T790M?中MDSCs的推测水平更高(P=0.04,t检验),而TAMM2的水平更低(P=0.003,t检验)。免疫T790M?中PD-L1、FOXP3和IDO的表达也显著高于免疫T790M+肿瘤(图3B,PD-L1和FOXP3多重免疫荧光染色见附图S15B和S15C)。接下来,我们调查了耐药时的免疫表型是否与之前1G/2GTKI的持续时间有关。有趣的是,免疫T790M?肿瘤的总TTP最短(图3C),其中一半(5/10名患者
)的总TTP小于3个月。相反,免疫T790M+肿瘤的总生存期最长(中位TTP20.6个月;范围8.2月至76.8月),与免疫冷藏T790M+肿瘤相比(中位TTP4.1月;范围1.3月至13月;心率11.78;P=0.004;95%CI3.01月~46.2月;P=0.001;图3C)。Meta分析强调单剂免疫检查点抑制剂在EGFR突变的非小细胞肺癌(59例)、7/8(88%,4/8热、2/8冷、2/8未知)患者中缺乏疗效,这与Meta分析一致(补充表S5)。然而,一名免疫T790M+患者(A096)在临床试验中接受了nivolumab-ipilimumab免疫检查点抑制剂的联合治疗(60例),并获得了8.9个月的稳定病情。综上所述,我们的数据提示炎性趋化因子的潜在作用,例如,CXCL9-可能由MDSCs驱动-在介导T790M?TKI耐药中发挥作用。此外,我们的数据突出了GEP“热”肿瘤中TME成分的显著异质性,说明需要更详细地询问免疫环境以描绘特定的免疫靶点。
虽
本章未完,请点击下一页继续阅读!