恒星和超新星中合成的。超新星爆发令它周围的星际物质充满了金属(对于天文学家来说,金属就是比氦重的所有元素,与化学中的概念不同)。
这些合成的金属丰富了形成恒星的分子云的元素构成,所以每一代的恒星(及行星系)的组成成分都有所不同,由纯氢、氦组成到充满金属的组成。超新星是宇宙间将恒星核聚变中生成的较重元素重新分布的主要机制,不同元素的所有的分量对于一颗恒星的生命,以至围绕它的行星的存在性都有很大的影响。
膨胀中的超新星遗迹的动能能够压缩凝聚附近的分子云,从而启动一颗恒星的形成。如果气体云无法释掉过多的能量,增大的湍流压也能阻止恒星形成。
在太阳系附近的一颗超新星爆发中,借助其中半衰期较短的放射性同位素的衰变产物所提供的证据能够了解四十五亿年前太阳系的元素组成,这些证据甚至显示太阳系的形成也有可能是由这颗超新星爆发而启动的。由超新星产生的重元素经过了和天文数字一样长的时间后,这些化学成分最终使地球上生命的诞生成为可能。
除了在可见光区观测到的超新星遗迹外,通过专门用来观测来自太空的X射线的人造卫星“爱因斯坦天文台”,人类发现了不少天上的X射线源,其中有30个以上是X射线超新星遗迹。1572年出现的隆庆彗星即第古新星,就留下了X射线遗迹。超新星冲击波使得星际介质温度高达几百万开并辐射出强烈的X射线。这是一颗典型的Ⅰ型超新星。
使用射电望远镜可以发现仅由最稀薄气体构成的超新星遗迹。比如,是射电天文学家最先发现了仙后座A这一超新星遗迹,后来在光学波段也发现了它的极暗弱的对应体。
超新星爆发和宇宙线的产生也有一定的关系。星际介质中的粒子运动速度一般都在每秒几十千米范围内,但是也有某些特殊情况——有的粒子运动速度可以接近光速,这就是宇宙线。宇宙线是由一些物质粒子如电子、质子等组成的,在本质上完全不同于电磁波。一般说来,由于地球大气对宇宙线的吸收作用,有探测宇宙线必须到大气层之外。
如果搭乘气球上升到50千米的高空,就可以用底片拍摄宇宙线的踪迹。只有极少数能量极高的宇宙线可以到达地球表面。但是,当高能宇宙线与地球大气发生作用时,会引发一种闪光效应,同时产生二级宇宙线,在地球表面探测二级宇宙线是相对容易的。
实验表明,一些能量较低的宇宙线受到太阳活动的影响。比如,太阳活动有一
本章未完,请点击下一页继续阅读!