水深度较小,同时海床质地坚硬,可以提供足够拉力来拉住缆索,防止其直接飞出去。
另外一点,就是缆索的问题。
缆索是太空电梯最为重点的一个结构,它需要具有较大的半径,同时需要极高的强度和耐腐蚀性,同时要具有抗剪切以及抗疲劳性,其难点在于如何承担应力,而且要如何搭建。qq
其中的一种解决方法是材料,目前已经有人选用了一种高强度,高耐热性的复合纤维作为太空电梯的缆索—PBO(聚对苯撑苯苯并双噁唑)又称之为柴隆纤维。
这是阿美坚在上世纪80年代所生产的一种用于航天航空的符合材料,然而柴隆纤维的断裂长度只有384公里,仅仅为最低目标长度的1100,而且成本方面也非常的高昂,可以说若是采用这种的话,将大唐科技卖了都不够的。
而目前最有应用场景的材料,这是一种叫做碳纳米管的东西。
碳纳米管,又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口)的一维量子材料。
碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,约0.34nm,直径一般为2~20nm。
碳纳米管的拉伸强度为118.9±4.5GPa,断裂应变为16.41±0.22%,韧性为8.0±0.2GJm3,材料的拉伸属于非线性弹性行为,与广泛报道的碳纳米管弹性一致。
一条太空电梯的缆索,必须耐受大约60-100gpa(吉帕斯卡)的张力,而钢大约在承受2gpa的时候就会断裂,所以碳纳米管成为了一个比较合适的材料。
而且碳纳米管的寿命非常高,因为碳纳米管的寿命几乎与加载的频率无关,这意味着样品缺陷是瞬时形成的,裂纹扩展所需的时间可以忽略不计。
或者说,其疲劳失效过程是突然发生的,没有渐进性损伤,不存在损伤累积过程,碳纳米管的疲劳寿命,主要取决于初始缺陷的生成时间。
不过,碳纳米管的疲劳行为与温度有着一定的关联,较高的温度会导致碳纳米管抗疲劳能力下降,而在低温下则表现出更高的韧性。
而地球的大气层,则是会随着高度的增加,导致保温效果不断的减弱,温度会逐渐的降低,这一特性可以说是很完美的符合碳纳米管的疲劳行为。
而目前的碳纳米管还并没有能够投入使用,而且最长的碳纳米管
本章未完,请点击下一页继续阅读!